Introduction to Limit Order Books

Gero Junike

Grupo de Modelización Estadística Avanzada
Universitat Autònoma de Barcelona - UAB Barcelona

February 4, 2016
A Limit Order Book ("LOB") is a trading method used by most exchanges globally. It is a transparent system that matches customer orders (e.g. bids and offers) on a 'price time priority' basis.

Customers can see market depth. Both bid orders and ask orders for various sizes and prices are public.
Limit Order Book

Advantages

- transparent
- low cost
- everybody can trade with everybody else
- trading is anonymous
Limit Order Book

Definition: Order

Definition

A **sell order** $x = (p_x, \omega_x, t_x)$ submitted at time t_x with price p_x and size $\omega_x > 0$ is a commitment to *sell* up to $|\omega_x|$ units of the traded asset at a price no **less** than p_x.

Definition

A **buy order** $x = (p_x, \omega_x, t_x)$ submitted at time t_x with price p_x and size $\omega_x < 0$ is a commitment to *buy* up to $|\omega_x|$ units of the traded asset at a price no **greater** than p_x.

Definition

The **tick-size** π the smallest permissible price. All orders must arrive with an accuracy of π.
Definition

A **sell order** \(x = (p_x, \omega_x, t_x) \) submitted at time \(t_x \) with price \(p_x \) and size \(\omega_x > 0 \) is a commitment to *sell* up to \(|\omega_x| \) units of the traded asset at a price no less than \(p_x \).

Definition

A **buy order** \(x = (p_x, \omega_x, t_x) \) submitted at time \(t_x \) with price \(p_x \) and size \(\omega_x < 0 \) is a commitment to *buy* up to \(|\omega_x| \) units of the traded asset at a price no greater than \(p_x \).

Definition

The **tick-size** \(\pi \) the smallest permissible price. All orders must arrive with an accuracy of \(\pi \).
Limit Order Book
Definition: Order

Definition

A *sell order* $x = (p_x, \omega_x, t_x)$ submitted at time t_x with price p_x and size $\omega_x > 0$ is a commitment to *sell* up to $|\omega_x|$ units of the traded asset at a price no less than p_x.

Definition

A *buy order* $x = (p_x, \omega_x, t_x)$ submitted at time t_x with price p_x and size $\omega_x < 0$ is a commitment to *buy* up to $|\omega_x|$ units of the traded asset at a price no greater than p_x.

Definition

The *tick-size* π the smallest permissible price. All orders must arrive with an accuracy of π.
When a buy (sell) order x is submitted, a matching-algorithm checks whether it is possible to match x to some other previously submitted sell (buy) order. If so, the matching occurs immediately. If not, x stays in the system, waiting to be matched or to be cancelled.

- An order which is immediately matched is called *market order*.
- An orders which is not immediately matched is called *limit order*.
- Usually price-time priority is used for matching.
When a **buy** (**sell**) order \(x \) is submitted, a matching-algorithm checks whether is is possible to match \(x \) to some other previously submitted **sell** (**buy**) order. If so, the matching occurs immediately. If not, \(x \) stays in the system, waiting to be matched or to be cancelled.

- An order which is immediately matched is called *market order*.

- An orders which is not immediately matched is called *limit order*.

- Usually price-time priority is used for matching.
Limit Order Book
Trade-matching algorithm

- When a buy (sell) order \(x \) is submitted, a matching-algorithm checks whether it is possible to match \(x \) to some other previously submitted sell (buy) order. If so, the matching occurs immediately. If not, \(x \) stays in the system, waiting to be matched or to be cancelled.

- An order which is immediately matched is called *market order*.

- An orders which is not immediately matched is called *limit order*.

- Usually price-time priority is used for matching.
Limit Order Book
Trade-matching algorithm

- When a buy (sell) order x is submitted, a matching-algorithm checks whether it is possible to match x to some other previously submitted sell (buy) order. If so, the matching occurs immediately. If not, x stays in the system, waiting to be matched or to be cancelled.

- An order which is immediately matched is called *market order*.

- An order which is not immediately matched is called *limit order*.

- Usually price-time priority is used for matching.
Definition

A LOB $\mathcal{L}(t)$ is the set of all limit orders in a market at time t.

Remark

$\mathcal{L}(t)$ is a càdlàg process. (right continuous with left limits). It holds for $x \in \mathcal{L}(t_x), x \not\in \lim_{t \uparrow t_x} \mathcal{L}(t)$.

Definition

A LOB $\mathcal{L}(t)$ is the set of all limit orders in a market at time t.

Remark

$\mathcal{L}(t)$ is a càdlàg process. (right continuous with left limits). It holds for $x \in \mathcal{L}(t_x), x \notin \lim_{t \uparrow t_x} \mathcal{L}(t)$.
Definition

A LOB \(L(t) \) is the set of all limit orders in a market at time \(t \).

Remark

\(L(t) \) is a càdlàg process. (right continuous with left limits). It holds for \(x \in L(t_x), x \notin \lim_{t \uparrow t_x} L(t) \).
Limit Order Book
Definition bid/ask-side

Definition
A LOB $\mathcal{L}(t)$ can be partitioned into the set of buy orders $\mathbb{B}(t)$ for which $\omega_x < 0$, and into the set of sell orders $\mathbb{A}(t)$ for which $\omega_x > 0$.

Definition
The set of buy orders are also called bid-side. The set of sell orders are also called ask-side.
A LOB $\mathcal{L}(t)$ can be partitioned into the set of buy orders $\mathcal{B}(t)$ for which $\omega_x < 0$, and into the set of sell orders $\mathcal{A}(t)$ for which $\omega_x > 0$.

The set of buy orders are also called \textit{bid-side}. The set of sell orders are also called \textit{ask-side}.
Definitions

The *best bid price* at time t is the highest stated price among the buy orders at time t,

$$ b(t) := \max_{x \in \mathcal{B}(t)} p_x. $$

The *best ask price* at time t is the lowest stated price among the sell orders at time t,

$$ a(t) := \min_{x \in \mathcal{A}(t)} p_x. $$

The couple *best bid price* and *best ask price* is also called *top of the book*.
Definition

The bid-ask spread at time t is $s(t) := a(t) - b(t)$.

Definition

The mid-price at time t is $m(t) := [a(t) + b(t)]/2$.

Definition

The bid-side volume or depth available at price p and time t is

$$v_b(p, t) := \sum_{\{x \in B(t) | p_x = p\}} \omega_x.$$
Limit Order Book
Definition spread, mid-price, volume

Definition
The bid-ask spread at time t is $s(t) := a(t) - b(t)$.

Definition
The mid-price at time t is $m(t) := [a(t) + b(t)]/2$.

Definition
The bid-side volume or depth available at price p and time t is

$$v_b(p, t) := \sum_{\{x \in B(t) | p_x = p\}} \omega_x.$$
Limit Order Book
Definition spread, mid-price, volume

Definition
The *bid-ask spread* at time t is $s(t) := a(t) - b(t)$.

Definition
The *mid-price* at time t is $m(t) := [a(t) + b(t)]/2$.

Definition
The *bid-side volume or depth* available at price p and time t is

$$v_b(p, t) := \sum_{\{x \in \mathcal{B}(t) | p_x = p\}} \omega_x.$$
Basic Notion
State of the Art (briefly)
Discrete Limit Order Book Model

Video

VIDEO
LOB data

- LOB data offer unusually rich, detailed and high-quality historic data.
- The data provides testing ground for theories e.g. about statistical regularities.
- Investigations of LOB come from:
 - Economics
 - Physics
 - Statistics
 - Mathematics
 - Psychology
Economists usually focus on the behaviour of individual traders. (perfect rationality). Traders are rational and maximize their personal utility.

Statistics/physics community assume orders to be governed by stochastic processes. (zero intelligence).

- Parameters can be estimated by historic data.
- Statistical output of such models can be compared to real data.
Economists usually focus on the behaviour of individual traders. (perfect rationality). Traders are rational and maximize their personal utility.

Statistics/physics community assume orders to be governed by stochastic processes. (zero intelligence).

- Parameters can be estimated by historic data.
- Statistical output of such models can be compared to real data.
Key unresolved Problems

- Understand statistical regularities.

- Provide a model that is capable of simultaneously reproduce all so far known stylized facts. (Such model does not yet exists!).

- Understand recent data.

- Algorithmic trading:
 - very few empirical studies so far.
 - understand how it affects market stability.
Key unresolved Problems

- Understand statistical regularities.

- Provide a model that is capable of simultaneously reproduce all so far known stylized facts. (Such model does not yet exists!).

- Understand recent data.

- Algorithmic trading:
 - very few empirical studies so far.
 - understand how it affects market stability.
Key unresolved Problems

- Understand statistical regularities.
- Provide a model that is capable of simultaneously reproduce all so far known stylized facts. (Such model does not yet exists!).
- Understand recent data.
- Algorithmic trading:
 - very few empirical studies so far.
 - understand how it affects market stability.
Key unresolved Problems

- Understand statistical regularities.

- Provide a model that is capable of simultaneously reproduce all so far known stylized facts. (Such model does not yet exists!).

- Understand recent data.

- Algorithmic trading:
 - very few empirical studies so far.
 - understand how it affects market stability.
Model Framework
Define the n’th model (bid side only)

- Let $n \in \mathbb{N}_0$. For each n define a model describing the LOB.
 - Δx^n is the tick size of the n’th model. We could analysis $\Delta x^n \to 0, n \to \infty$.
 - Δt^n is the inter-arrival time between two orders. Time t is discrete, $t \in \Delta t^n \cdot \mathbb{N}$.
 - B^n_t is a stochastic process describing the best bid price at time t.
 - T^n_t is a stochastic process describing the volume at the best bid price.
 - $V^{n,i}_t$ is a stochastic process describing the relative volume i ticks away from the best bid price at time t. $i = 0, 1, 2, ...$ The absolute volume i ticks in the book at time t is $T^n_t \cdot V^{n,i}_t$.
Model Framework
Define the n’th model (bid side only)

- Let $n \in \mathbb{N}_0$. For each n define a model describing the LOB.
 - Δx^n is the tick size of the n’th model. We could analysis $\Delta x^n \to 0, n \to \infty$.
 - Δt^n is the inter-arrival time between two orders. Time t is discrete, $t \in \Delta t^n \cdot \mathbb{N}$.
 - B^n_t is a stochastic process describing the best bid price at time t.
 - T^n_t is a stochastic process describing the volume at the best bid price.
 - $V^{n,i}_t$ is a stochastic process describing the relative volume i ticks away from the best bid price at time t. $i = 0, 1, 2, ...$ The absolute volume i ticks in the book at time t is $T^n_t \cdot V^{n,i}_t$.

Gero Junike
UAB
Model Framework
Define the n’th model (bid side only)

- Let \(n \in \mathbb{N}_0 \). For each \(n \) define a model describing the LOB.
 - \(\Delta x^n \) is the tick size of the n’th model. We could analyse \(\Delta x^n \to 0, n \to \infty \).
 - \(\Delta t^n \) is the inter-arrival time between two orders. Time \(t \) is discrete, \(t \in \Delta t^n \cdot \mathbb{N} \).
 - \(B^n_t \) is a stochastic process describing the best bid price at time \(t \).
 - \(T^n_t \) is a stochastic process describing the volume at the best bid price.
 - \(V^{n,i}_t \) is a stochastic process describing the relative volume \(i \) ticks away from the best bid price at time \(t \). \(i = 0, 1, 2, \ldots \) The absolute volume \(i \) ticks in the book at time \(t \) is \(T^n_t \cdot V^{n,i}_t \).
Model Framework

Define the n’th model (bid side only)

- Let $n \in \mathbb{N}_0$. For each n define a model describing the LOB.
 - Δx^n is the tick size of the n’th model. We could analysis $\Delta x^n \to 0, n \to \infty$.
 - Δt^n is the inter-arrival time between two orders. Time t is discrete, $t \in \Delta t^n \cdot \mathbb{N}$.
 - B^n_t is a stochastic process describing the best bid price at time t.
 - T^n_t is a stochastic process describing the volume at the best bid price.
 - $V^n_{t,i}$ is a stochastic process describing the relative volume i ticks away from the best bid price at time t. $i = 0, 1, 2, ...$ The absolute volume i ticks in the book at time t is $T^n_t \cdot V^n_{t,i}$.
Model Framework
Define the n’th model (bid side only)

- Let $n \in \mathbb{N}_0$. For each n define a model describing the LOB.
 - Δx^n is the tick size of the n’th model. We could analysis $\Delta x^n \rightarrow 0, n \rightarrow \infty$.
 - Δt^n is the inter-arrival time between two orders. Time t is discrete, $t \in \Delta t^n \cdot \mathbb{N}$.
 - B_t^n is a stochastic process describing the best bid price at time t.
 - T_t^n is a stochastic process describing the volume at the best bid price.
 - $V_t^{n,i}$ is a stochastic process describing the relative volume i ticks away from the best bid price at time t. $i = 0, 1, 2, ...$ The absolute volume i ticks in the book at time t is $T_t^n \cdot V_t^{n,i}$.
Orders

- There are two types of orders:
 - passive orders
 - active orders

- The random variable $\gamma_t \in \{a, p\}$ decides for each order arriving at time t whether is a passive or an active order.
Passive Orders

Passive orders do not lead prices to change. We distinguish two different event types:

- Limit order placement or cancellation at the top of the book by the random factor $\alpha_n^t \in (0, \infty)$.
- Limit order placement or cancellation in the book by the random factor $\beta_n^t \in [0, \infty)$.

Let ω_n^t be a non-negative random variable describing the place, where limit order placement or cancellation happens.
The dynamics of passive orders at the bid-side are as follows:

\[B^n_t - B^n_{t-} = 0 \]

\[T^n_t - T^n_{t-} = 1_{\omega^n_t < \Delta x^n} (\alpha^n_t - 1) T^n_{t-} \]

\[V^{n,k}_t - V^{n,k}_{t-} = 1_{\omega^n_t < \Delta x^n} \left(\frac{1}{\alpha^n_t} - 1 \right) V^{n,k}_{t-} \]

\[+ 1_{\omega^n_t \geq \Delta x^n} 1_k = \left\lceil \omega^n_t / \Delta x^n \right\rceil (\beta^n_t - 1) V^{n,k}_{t-}, \quad k \in \mathbb{N} \]
The dynamics of passive orders at the bid-side are as follows:

\[B_t^n - B_{t-}^n = 0 \]

\[T_t^n - T_{t-}^n = 1_{\omega_t^n < \Delta x^n} (\alpha_t^n - 1) T_{t-}^n \]

\[V_{t, k}^n - V_{t-}^{n, k} = 1_{\omega_t^n < \Delta x^n} \left(\frac{1}{\alpha_t^n} - 1 \right) V_{t-}^{n, k} \]

\[+ 1_{\omega_t^n \geq \Delta x^n} 1_{k = \lfloor \omega_t^n / \Delta x^n \rfloor} (\beta_t^n - 1) V_{t-}^{n, k}, \quad k \in \mathbb{N} \]
Passive Orders
Dynamics

The dynamics of passive orders at the bid-side are as follows:

\[B^n_t - B^n_{t-} = 0 \]

\[T^n_t - T^n_{t-} = 1_\omega^n < \Delta x^n (\alpha^n_t - 1) T^n_{t-} \]

\[V^{n,k}_t - V^{n,k}_{t-} = 1_\omega^n < \Delta x^n \left(\frac{1}{\alpha^n_t} - 1 \right) V^{n,k}_{t-} \]

\[+ 1_\omega^n \geq \Delta x^n 1_{k=\lceil \omega^n_t / \Delta x^n \rceil} (\beta^n_t - 1) V^{n,k}_{t-}, \quad k \in \mathbb{N} \]
Active orders lead prices to change. There are two different event types:

- A limit buy-order is placed into the spread. The volume placed is described by the positive random variable ξ^n_t. For simplicity it is assumed that this happens exactly one tick above the (previously) best bid price.

- A market order arrives. For simplicity it is assumed that such order exactly wipes out the volume at the best bid price.

Let $\eta_t \in \{0, 1\}$ be a random variable.

- The event $\eta_t = 0$ corresponds to the event ”limit order into the spread”.

- The event $\eta_t = 1$ corresponds to the event ”market order”.

Gero Junike
UAB
Active Orders

Active orders lead prices to change. There are two different event types:

- A limit buy-order is placed into the spread. The volume placed is described by the positive random variable ξ^n_t. For simplicity it is assumed that this happens exactly one tick above the (previously) best bid price.

- A market order arrives. For simplicity it is assumed that such order exactly wipes out the volume at the best bid price.

Let $\eta_t \in \{0, 1\}$ be a random variable.

- The event $\eta_t = 0$ corresponds to the event ”limit order into the spread”.

- The event $\eta_t = 1$ corresponds to the event ”market order”.

Gero Junike

UAB
Active Orders

Active orders lead prices to change. There are two different event types:

- A limit buy-order is placed into the spread. The volume placed is described by the positive random variable ξ^n_t. For simplicity it is assumed that this happens exactly one tick above the (previously) best bid price.

- A market order arrives. For simplicity it is assumed that such order exactly wipes out the volume at the best bid price.

Let $\eta_t \in \{0, 1\}$ be a random variable.

- The event $\eta_t = 0$ corresponds to the event ”limit order into the spread”.

- The event $\eta_t = 1$ corresponds to the event ”market order”.

Gero Junike
UAB
The dynamics of active orders at the bid-side are as follows:

\[
B_t^n - B_{t-}^n = \Delta x^n 1_{\{0\}}(\eta_t^n) - \Delta x^n 1_{\{1\}}(\eta_t^n)
\]

\[
T_t^n - T_{t-}^n = (\xi t - T_{t-}^n) 1_{\{0\}}(\eta_t^n) + (V_{t-}^{n,1} - 1) T_{t-} 1_{\{1\}}(\eta_t^n)
\]

\[
V_{t-}^{n,k} - V_{t-}^{n,k} = \left(\frac{T_t^n}{T_t^n} V_{t-}^{n,k-1} - V_{t-}^{n,k} \right) 1_{\{0\}}(\eta_t^n) + \left(\frac{T_t^n}{T_t^n} V_{t-}^{n,k+1} - V_{t-}^{n,k} \right) 1_{\{1\}}(\eta_t^n)
\]
The dynamics of active orders at the bid-side are as follows:

\[
B_t^n - B_{t-}^n = \Delta x^n 1_{\{0\}}(\eta_t^n) - \Delta x^n 1_{\{1\}}(\eta_t^n)
\]

\[
T_t^n - T_{t-}^n = (\xi_t^n - T_{t-}^n) 1_{\{0\}}(\eta_t^n) + (V_{t-}^{n,1} - 1) T_{t-} 1_{\{1\}}(\eta_t^n)
\]

\[
V_{t}^{n,k} - V_{t-}^{n,k} = \left(\frac{T_{t-}^n}{T_t^n} V_{t-}^{n,k-1} - V_{t-}^{n,k} \right) 1_{\{0\}}(\eta_t^n)
\]

\[
+ \left(\frac{T_{t-}^n}{T_t^n} V_{t-}^{n,k+1} - V_{t-}^{n,k} \right) 1_{\{1\}}(\eta_t^n)
\]
The dynamics of active orders at the bid-side are as follows:

\[B^n_t - B^n_{t-} = \Delta x^n 1\{0\}(\eta^n_t) - \Delta x^n 1\{1\}(\eta^n_t) \]

\[T^n_t - T^n_{t-} = (\xi^n_t - T^n_{t-})1\{0\}(\eta^n_t) + (V^{n,1}_{t-} - 1) T^n_{t-} 1\{1\}(\eta^n_t) \]

\[V^{n,k}_t - V^{n,k}_{t-} = \left(\frac{T^n_{t-}}{T^n_t} V^{n,k-1}_{t-} - V^{n,k}_{t-} \right) 1\{0\}(\eta^n_t) + \left(\frac{T^n_{t-}}{T^n_t} V^{n,k+1}_{t-} - V^{n,k}_{t-} \right) 1\{1\}(\eta^n_t) \]
Simulations
Histogram of Omega for Amazon.com on 2012-06-21. Price at start of trading: 223.82 USD.
The diagram shows a histogram of the distance between the best bid price and the position where placement/cancellation of orders takes place. (Amazon.com on 2012-06-21).
The diagram shows a histogram of the spread. (Amazon.com on 2012-06-21).
The diagram shows a histogram of the distance between the best bid price and the position where placement/cancellation of orders takes place. (Microsoft Corporation on 2012-06-21). Price at start of trading: 30.95 USD.