Using Twitter as a source of information for stock market prediction

Ramon Xuriguera (rxuriguera@lsi.upc.edu)

Joint work with Marta Arias and Argimiro Arratia ERCIM 2011, 17-19 Dec. 2011, University of London, UK

Motivation and Goals

Vast amounts of new information **every day** second available in social networking platforms.

Can some of this information help improve time series' predictions for certain stocks?

Hypotheses

- ► Volume

 More messages → More variance (Volatility)
- ► Sentiment
 More positive/negative → Increase/Decrease benefits
 (Returns)

Motivation and Goals

Related Work

- J. Bollen, et al. *Twitter mood predicts the stock market* [5]
 - Assesses general mood by checking whether messages contain certain words (OpinionFinder and Google Profile of Mood States)
 - Predict time series direction with a self-organizing Fuzzy Neural Network
 - ► Twitter dataset from Feb. to Dec. 2008.

Our approach

- Different sentiment classifier
- ► Target different companies and indexes by only looking at tweets related to them.
- ▶ Test with other models

Motivation and Goals

The big picture

Twitter

RT @TEDchris: Mind-shifting #TED talk on the evolution of language from Mark Pagel http://on.ted.com/Pagel

3 Aug via TweetDeck

- Social networking and microblogging service
- ► Messages or *tweets* up to 140 characters
- ► Hashtags, retweets, mentions, URLs

Twitter Data Retrieval

Lack of standard public datasets.

It is not allowed for third parties to redistribute Twitter Content. We were forced to create our own dataset.

Twitter Streaming API

- ► An HTTP connection is kept alive to retrieve tweets as they are posted. Tweets are filtered by keyword or author.
- Limited amount of data. Can't go back in time.
- ▶ Began listening to Twitter's stream in March 2011.

Buying data from official tweet resellers

► Extremely expensive

Twitter

Relevance Filter

Latent Dirichlet Allocation

- ► Text as mixtures of (two) topics (relevant/not relevant)
- ▶ 300K tweet collection. Tested with 20K tweets
- ► High precision (83.3%), low recall (65.4%)

Sentiment Analysis

Determine whether a message contains **positive or negative opinions** on a given subject

A sentiment classifier is trained with an automatically labelled dataset where **smileys are used as labels**: [1, 2, 3]

:-) :-D
$$\rightarrow$$
 positive [:=8][-]?[)D]
:-(\rightarrow negative [:=8][-]?(

How do we go about providing text to a probabilistic classifier?

► Bag of Words Vector of occurrences/frequencies of the words in a text.

Sentiment Analysis

Classifier

- Multinomial Naïve Bayes
 Will assign a tweet, the sentiment with the highest conditional probability given that tweet
- ► Binary Classification (positive/negative)
- ▶ 82.5% for twittersentiment set

Sentiment Index:

► Time series of the daily percentage of positive tweets concerning a company

Sentiment Analysis

The big picture

Forecasting Financial Time Series Goal

Focus on companies: AAPL, GOOG, MSFT, YHOO Two indices: OEX (S&P100) and GSPC (S&P500) And their implicit volatility: VXO and VIX

Price Returns:

- Adjusted Close
- ► Log-normally distributed
- ► Logarithmic Returns

Volatility:

- Computed from price returns
- Exponetially Weighted Moving Average

Forecasting Financial Time Series

Forecasting Financial Time Series

Model Adequacy

- ► Nonlinearity
 Test for nonlinear relationship between two series. [6]
- ► Causality tests
 Granger test of causality (parametric and non-parametric [7]) for
 the two time series and different lags
- ► Prequential evaluation

 Too few data to split into sets. Use all past data to re-train, then predict the direction of the series for the following day.

Models for prediction

- Linear Regression
- ► Feed-forward Neural Networks
- ► Support Vector Machines

Compared **Accuracy** and **Directional Measure** for predictions **using** and **not using** Twitter data.

Large DM \rightarrow Model outperforms chance of random choice

Predicted	R.Filter	Model	Lags	 Acc. w/o	Acc. w/	DM w/o	DM w/
AAPL	TRUE	SVM(sigmoid)	2	 0.560	0.628	2.398	10.739
AAPL	TRUE	SVM(sigmoid)	3	 0.521	0.601	0.296	6.629
AAPL	TRUE	SVM(sigmoid)	4	 0.537	0.635	0.835	11.932

Tested many parameter configurations and we end up with **thousands** of rows of results:

Need to summarise

Decision tree. Improved Accuracy (Weka's REPTree)

Decision tree. Improved DM (Weka's REPTree)

Some of the machine learning models we have evaluated, especially Support Vector Machines, present improvements in their predictive power when reinforced with our Twitter Sentiment Index

References I

- [1] A. Go, R. Bhayani, L. Huang Twitter Sentiment Classification using Distant Supervision, 2009.
- [2] A. Bifet, E. Frank Sentiment Knowledge Discovery in Twitter Streaming Data, Discovery Science, 2010.
- [3] J.K. Ahkter, S. Soria Sentiment Analysis: Facebook Statuses Messages,
- [4] R.S. Tsay Analysis of Financial Time Series (pp. 216) 2002

References II

- [5] J. Bollen, H. Mao and Xiao-Jun Zeng Twitter mood predicts the stock market, Journal of Computational Science, Vol. 2, Iss. 1, 2011.
- [6] T. H. Lee, H. White, C. W. J. Granger Testing for neglected nonlinearity in time series models *Journal of Econometrics*, Vol. 56, Iss. 3, 1993.
 - [7] C. Diks, V. Panchenko
 A new statistic and practical guidelines for nonparametric
 Granger causality testing
 Journal of Economic Dynamics and Control, Vol. 30, Iss. 9-10, 2006.

Directional Measure

Given a contingency table with predicted results,

Actual		Predicted	
	Up	Down	
Up	m_{11}	m_{12}	m_{10}
Down	m_{21}	m_{22}	m_{20}
	m_{01}	m_{02}	m

The directional measure can be computed as:

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(m_{ij} - m_{i0} m_{0j} / m\right)^{2}}{m_{i0} m_{0j} / m}$$

Under some circumstances, it behaves like a χ^2 distribution with 1 degree of freedom [4]. Assuming a 5% error, we need to have $\chi^2 > 3.84$.

A bit more about LDA

- ► Generative model
- ► Words are only observed variables
- ► Topics are distribution over words
- ▶ Dirichlet: distribution over distributions